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Abstract

The multiscale Galerkin formulation of two-dimensional elasticity problems is presented. For easy interpolation and
boundary handlings as well as efficient adaptive analysis, two-dimensional interpolation wavelets are used as the
multiscale trial functions in the Galerkin formulation. After the validity of the present multiscale adaptive method
is verified with some benchmark problems, the present wavelet-based method is applied to the multiscale topology
optimization that progresses design resolution levels dyadically from low to high levels. By this application, we show the
potential of the multiscale method and the possibility of developing a fully integrated analysis and topology design
optimization in the multiscale multiresolution setting.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There has been an increasing interest in the wavelet-based approach in recent years due to the successes
of the wavelet-based methods in several applications. Some, not all, of recent investigations on the wavelet
method include papers by Amaratunga and Williams (1997), Bertoluzza and Naldi (1996), Bertoluzza
(1997), Christon and Roach (2000), Cohen et al. (1998), Cohen and Masson (1999), Dahmen (2001),
Glowinski et al. (1993, 1994), Kim and Jang (2002), Monasse and Perrier (1998), Wells and Zhou (1993).
(See Dahmen (2001) for a recent complete list of references on this subject.) The main advantage of the
wavelet-based methods is that they allow efficient adaptive analysis when analysis is carried out in multi-
resolution.

Though various wavelets are used as the multiscale trial basis in the Galerkin formulation, the hat
interpolation wavelets are employed in this work as they have simple forms, and do not pose much

* Corresponding author. Tel.: +82-2-880-7154; fax: +82-2-883-1513.
E-mail address: yykim@snu.ac.kr (Y.Y. Kim).

0020-7683/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0020-7683(03)00417-7


mail to: yykim@snu.ac.kr

6474 J.E. Kim et al. | International Journal of Solids and Structures 40 (2003 ) 6473—6496

difficulty in handling general boundary conditions especially when the wavelet-Galerkin method is
formulated in a fictitious domain. Some successful applications of the interpolation wavelet-based
Galerkin method are reported by Christon and Roach (2000) and Kim and Jang (2002). Christon and
Roach (2000) have shown that the hat interpolation wavelets are stable in H' and quite effective for
problems with dominant elliptic characteristics. Jang et al. (2003) has recently proposed a multiscale
adaptive method that can handle general boundary conditions along curved boundaries for Poisson’s
problems.

The first objective of the present investigation is to develop the multiscale adaptive wavelet-Galerkin
method for two-dimensional plane elasticity problems by extending the approach developed by Jang et al.
(2003) for Poisson’s problems. The present wavelet formulation for elasticity problems will be followed by
the numerical study of the typical benchmark problems. With this study, we will illustrate how efficiently
two-dimensional elasticity problems are solved even with considerably small numbers of interpolation
wavelet functions.

The second objective of this investigation is to apply the multiscale wavelet-Galerkin method to the
multiscale topology optimization. Some advantages and effectiveness of the multiscale design optimization
can be found in Kim and Yoon (2000, 2001), Earmme (2001), Poulsen (2002), and Yoon et al. (2003).
Unlike the standard single-scale topology optimization, design optimization is carried out progressively
from low to high resolution in the multiscale multiresolution. Since the design resolution varies, there is no
need to use the same, pre-fixed analysis resolution level throughout all design resolution levels. By applying
the present wavelet-Galerkin method in the adaptive multiresolution setting at every design resolution
level of the multiscale design optimization, the numerical efficiency can be gained and remeshing can be
avoided.

Though there still remain a few problems to overcome, the present application to the multiscale topology
optimization would pave the way to the fully integrated multiscale multiresolution analysis and design
optimization in the future. In standard single-scale methods, design optimization usually starts with initial
fixed finite element meshes. If the analysis and design optimization are fully integrated in multiresolution,
however, there will be no need to pre-select a design and/or analysis resolution level at the very beginning
stage of the design optimization; the design resolution level will increase adaptively from a low to a high
level sufficient enough to satisfy all the design requirements while analysis at each design iteration is carried
out adaptively in multiresolution without remeshing.

In design application examples, we consider well-known compliance minimization problems. In these
examples, the topology optimization is carried out in the multiscale multiresolution setting for which the
present wavelet-Galerkin method will be used as an adaptive solver to avoid cumbersome remeshing. Since
the history on the development of topology optimization (Bendsge and Kikuchi, 1988) is well reviewed by
Eshenauer and Olhoff (2001), the general discussion or the literature review on topology optimization will
not be given here.

2. Adaptive wavelet-Galerkin analysis of two-dimensional elasticity problems
2.1. Multiscale wavelet-Galerkin formulation

We begin with the weak formulation for two-dimensional elasticity problems, which can be stated as

FinduesS, forallvelV,

_ 1
/s(v):C:s(u)dw:/f-vdw+/ t-vdrl, M)
» [0} Ffj)
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with

S, = {uieHl(w)|ui:g,- on I}

(i=1,2)

V,={v,€ H (w)|v;=0o0n I'¥}
where C denotes the elasticity tensor, ¢ the strain tensor and H' the Sobolev space of degree 1. The two-
dimensional domain that an elastic body occupies is denoted by w, which will be referred to as a package
domain (see Fig. 1). The boundary I',, of @ consists of I where a surface traction t is given and I'¥, where
displacements are prescribed.

To facilitate the adaptive multiscale analysis without remeshing, we use a rectangular fictitious domain Q2
encompassing the package domain w. The fictitious domain method has been used successfully in various
problems as done by Cohen and Masson (1999), DeRose (1998), Diaz (1999), Glowinski et al. (1993, 1994),
Jang et al. (2003), Wells and Zhou (1993). The boundary dQ of Q consists of three parts I'%, F';z‘ and F?j
such that

rs=Qnre, ry=Qnr"

? [ox

rg =0\ (rsurh)

w w

where ' is the traction-free boundary that does not intersect with either I', or I,

To formulate the multiscale method in the fictitious domain £, the elasticity tensor C and the body force
f must be redefined as

_JC f(xyeow
Colx.y) = {;{C 1else (ic},y) eQ\w (2)
f(x,y) if (x,y) €
folx,y) = {0 g else (ic},y) Z)Q\w (3)

where y is a small parameter (y = 1.0 x 1073 is used in the present work). The effect of this parameter on the
solution accuracy may be found in Cohen and Masson (1999) and Jang et al. (2003).

When the fictitious domain is introduced, the original Galerkin formulation in Eq. (1) can be approx-
imated as

Q

Fig. 1. The typical elasticity problem with a package domain @ embedded into a fictitious domain Q.
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Find ugp € So for all vg € 7

/s(vQ):ngs(ug)dw:/fg-vgd[2+/ t-vodl,
Q Q r

with
SQ:{uiQEHl( ) |uio = g on I'g} (i=1,2)
i=1,
VQ:{UI'QGH( )|UIQ*OOHF}

For the multiscale analysis, the displacement field u must be expressed in multiscales. Before present-
ing the full multiscale analysis, we consider the following two-scale representations of u(x,y) at resolution

J:

u;(x,
u) =) = { V0] = S ssaie) )
i\ X, Y ]
or
3
ZS] 1D 14 (X, ) "‘Z a7 W (x,p) (6)
m=1 k1l
with

S du,m
—1,k,1 j—1,k,l

Sj*lAk,l = S" and d/ lkl = d{;m'
i1kl i1k,

If the analysis resolution level is j for a domain Q = [0, 1] x [0, 1], for instance, the interpolating grid
points will be located at (27/k,2771) (k,1 € {0,1,2,...,2/}). The representation is the same as that used in
the finite element discretization with equal-sized bilinear elements. However, the representation in Eq. (6) is
given by two sets of functions ¢;;, and ¥, ; which are defined as

¢j,k,l(x7y) =2p(2x —k, 2y — 1) (7)
lp;r,lk,l(xay) = Zj‘//m(zjx - k» 2/)} - l) (m = 1, 2, 3) (8)

The two-dimensional scaling function ¢(x,y) and wavelet /(x, y) are constructed by the tensor products
of the one-dimensional hat interpolation scaling function ¢, (x) and ¥, (x):

$(x,y) = dip(x¥)Pip(»)
¥ (x,¥) = ¥,p(x)$p(¥) (horizontal wavelet)
W (x,y) = dip (@) p(v)  (vertical wavelet)

V' (x,y) = Yip(Wip(y)  (diagonal wavelet)

The functions ¢, (x) and ¥, (x) are given by the autocorrelation of the Daubechies scaling function (see
Beylkin and Saito, 1993) as

x+1 for—1<x<0
¢p(x)=¢ 1—x for0<x<1 o)

0 else
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2x for 0<x<1/2
VUipx) =¢p(2x—1)=4¢ 2—-2x for 1/2<x<1 (10)
0 else

If the function space generated by {¢;,,} (k,/ = integers) is denoted ¥}, the use of Eq. (6) is equivalent
to the decomposition of ¥} into V;_; & W,_, where W,_, is the space generated by {y/",, ;} (k,/ = integers)
that denotes the dlﬂerence between Vi and Vii. Therefore PO DNL ;”1 . (x,») represents the
difference between u(x,y) in ¥; and Zk /Si-1 k,(j) 1k ,(x ») at the resolution level j—1

Repeating the decomposmon of V;into V_; and _1forj=jo+1,...,J yields the following multiscale
representation of u(x, y):

Zsjok1¢/uk1xy —&-ZZdekllﬁ;"klxy (11)

J=jo m=1
where the lowest resolution level jo is usually set as jo = 1. Since the scale information that each v,
(j = jo,...,J — 1) represents is different, the representation in Eq. (11) is multiscaled. The transformation
between {s;x,} (k,/=integers) and {s; 14, {d},, },_1,5} (k,/=integers) may be represented by a
transformation matrix 7;, which may be found in Jang et al. (2003):

{siwit =T, {sj-141, {d;'n—ltk,l}mzl,2,3}

To present the multiscale Galerkin formulation based on Eq. (11), we consider the following representa-
tions of u at the resolution j in two-scale form as in Eq. (6) and then extend the result to the full multiscale
representation in Eq. (11).

In matrix form, Eq. (6) is rewritten as

u/(x7y) :Nj(xvy) 'Uj (12)

where the matrix N; and the coefficient vector U, are defined as

D, 0 ‘Pl'—l 0 ‘Pz'—l 0 ‘P3'—1 0 d d d
N, _ % J J J =[N, N N2 N% 13
J (xa y) [ 0 (Djfl 0 ‘l’};l 0 ‘P12~71 0 ll’j:ll [ j J J J ] ( )
U(x,y) ={si, s, (dl{‘—ll dLﬂl d%—zl dl{‘—z duf dl-‘f )V} ={s i}t (14)
where s7 | and d7"} are defined as s7 | = {s? |}, &} = {d}"}, ,} (¢ =u or v, m=1,2,3). The vectors

D, 1,‘1‘ ', in Eq. (13) may be 1dent1ﬁed by equating Eqs (6) and (12).
Usmg the standard procedure employed to derive a matrix form from Eq. (1), we can derive the following
matrix equation using the multiscale representation of the test and trial functions of the form in Eq. (6):

with

5,8 s,d) s d7 s,d3
kj,j kj,j k ij'
kdl 3 kdl dz kdl 3

K = JiJ JJ 16
VA sym kaj 5 ki;,dg ( )
kc{sjds

The submatrices kﬁ in Eq. (16) are defined as

Kb = /Q (N/)'L"DoLN? dQ (17)
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where Dy, denotes the matrix representation of the elasticity tensor Cp and the matrix Nﬁ is defined as

N if f=s
N, = {NE i f=d (18)
In Eq. (17), the matrix L denotes the usual differentiation operation:
0
ox
0
=1 %
o 0
dy ox

We remark here that the numerical integration in Eq. (17) can be easily performed by a typical quadrature
rule such as the Gauss quadrature. .
The load vector F; in Eq. (15) can be constructed by two parts, F/f and F’/ such that

F,=F +F (19)
where

F/ = /Q N/ fodQ (20)

F = /F Nitdr, (21)

If the usual single-scale representation of u at the resolution j is known

u(x,y) = ZS/M(f’,kzxy (22)

one can easily construct the system stiffness matrix Kj and the load vector F ;. From these single-scale
matrices K; and F;, the present multiscale matrices K; and F; in Eq. (15) can be constructed by the fol-
lowing transform:

where T, is the transformation matrix explained earlier.
To express the displacement u at the next resolution level j + 1, the following multiscale representation
will be used:

;1 (x, ) ZS/ 1Py (X,3) + Z sz w7 (X,3)

—1 m=

x,y) +

3
m=

Z el /klxy (24)
]

Considering the additional contribution of 32> | >4 T (x,p) for the resolution j+ 1, one can
express the stiffness matrix K;,; in the following form:

1

k:s ksd

_ j+1 j+1
K1 = i
sym il
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'Sin'ce k;;l =K, only k‘;.fl and kffl need to be newly constructed. The procedure to construct k;f] and k’ffl
is similar to that used to construct K;.
By carrying out the process described above for from the lowest resolution j = j, to the highest reso-
lution J, the following system equation can be finally formed:

K, U, =F, (25)
where

Uy = {st a0 dv . d ) (26)
and

F, = {Si,’ dj“;’d_iﬁl? e vdjfl}T (27)

and K, can be constructed by the same procedure to form K;,; from K;. More detailed procedures for
Poisson’s problems can be found in Christon and Roach (2000) and Jang et al. (2003).

2.2. Treatment of boundary conditions

The prescription of boundary conditions along curved boundaries has been one of the major difficulties
in developing an efficient multiscale wavelet-Galerkin method for problems defined in non-rectangular
domains. By extending the technique proposed for Poisson’s problems, we develop a method to handle
boundary conditions along general boundary curves for plane elasticity problems.

In this work, the boundary 0w of the package domain inside  is represented by zigzag lines. Fig. 2(b)
illustrates the zigzag approximation of the original boundary shown in Fig. 2(a). The grid size shown in Fig.
2 governs the resolution or the precision of the approximation used. If the area fraction of a rectangular cell
lying on w is greater than that lying on Q \ w, the cell is declared to lie inside the package domain Q. The
approximated package domain and its boundary will be denoted by ws and Owa, respectively.

__ To prescribe the displacement or the traction boundary conditions, it is convenient to work with either
U; or F;, the single-scale representations of the displacement and load vectors. To prescribe u; = g;

(i=1,2)along I'}, , the value of g; on the point of I'}, closest to I'f are used and simply substituted into the

(a) (b)

Fig. 2. (a) The package domain o with a general boundary and (b) its approximated domain w, with zigzag lines.
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corresponding locations in U ;. Then, its multiscale form Uj; is obtained from U ; by the successive appli-
cations of T;.

To treat traction boundary conditions, consider a traction vector t(s) prescribed along I'" in Fig. 3(a).
As in displacement boundary conditions, when approximating the boundary as I , that cons1sts of zigzag
lines, one can approximate the force vector Ft as

T T o ST .
F, = " N t(s)ds = " N; (t(s) sin 0 dx + t(s) cos 6dy) (28)
where N denotes the single-scale version of N; in Eq. (13).
To transfer the traction boundary condltlons prescribed on Ow into those prescribed on the approximate
boundary condition Ow,, the following approximation is considered:

F ~ N7 (t(s) sin 0dx + t(s) cos 0.dy) = NT (€ (x) dx + ¢ (v) dy) (29)

m N m N
with
th(x) = t(s)sin0, ¢§(y) = t(s)cosO (30)
where the arc coordinate s, the angle 0 and the unit normal vector n are depicted in Fig. 3(a) and (b). The
approximation in Eq. (20) is to replace t(s) by a statically equivalent system consisting of t, and t¥ as

By, e T ey

w w |
/ "
(a) (b)
t’(x) =t(s)sin@ t7(y)=t(s)cosd
RRRN

(© ()

Fig. 3. (a) A general boundary F under a surface reaction (b) its approximated boundary I with zigzag lines and (c,d) a statically

wA
equivalent system.
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illustrated in Fig. 3(c) and (d). Other approximations are possible, but the present approximation is not
only simple but also effective as shall be seen later with numerical examples. Once F is determined by Eq.
(29), its multiscale version F’ is obtained through the transformation 7.

2.3. Adaptive strategy

In the wavelet-based analysis, the wavelet coefficients in U; represent the differences between low and
high resolution approximations. Consequently, this method possesses an intrinsic adaptivity. Cohen et al.
(1998) and Dahmen (2001) presented efficient adaptive schemes using (bi-)orthogonal wavelets and showed
that the convergence rate is asymptotically optimal. Kim and Jang (2002) and Jang et al. (2003) have re-
cently investigated the convergence property of the adaptive hat wavelet-based Galerkin method numeri-
cally for one-dimensional box beam problems and two-dimensional Poisson problems.

In this work, we will use the adaptive scheme using two thresholding parameters (¢* > &' > 0). Assume
that the analysis at the resolution level j+ 1 (with {¢; ., {¢7,,},_; ;1) is finished. Then the following
procedures are used for the adaptive analysis at the next resolution level j + 2:

(i) Exclude the wavelet ", , from the basis set if its coefficient |d?, | < &} (31a)
(i) Preserve y/7, , in the basis set if & <|d, | <& (31b)
(iii) Add child wavelets of 7, ; into the basis set if |d}, | > &] (31c)

In (31), the child wavelets 'ﬂ, "1« are the wavelets at resolution j + 2 having the corresponding interpolation
points near those of the parent wavelet Y7, ;. The interpolation points for three types of the child wavelets
are illustrated in Fig. 4. As the resolution level increases, the thresholding parameters are usually reduced as
e, =¢/2and &), = ¢/2.

The ﬂow chart of the overall sequence of the present adaptive scheme is shown in Fig. 5. In applying the
adaptive scheme, two strategies illustrated in Fig. 6 can be considered. To explain these strategies, we utilize
a simple one-dimensional analysis model. In Strategy A, the adaptive scheme (31) is applied to the inter-
polation wavelets having the finest scales at the current resolution level. On the other hand, Strategy B
considers all leaf wavelets, regardless of their scales. The leaf wavelets are defined as the wavelets having no
child wavelet, and indicated by the dotted line in Fig. 6(b).

Although Strategy A is simple to implement, it has some deficiency; once some wavelets are declared not
to have child wavelets at a certain level, those wavelets are not allowed to have child wavelets any more.
Therefore, no further refinement is permitted around the interpolation (or grid) points of these wavelets.

On the other hand, further refinement can be made at any location if the condition (31c) is satisfied since
all leaf wavelets are examined in Strategy B at every resolution level. The flow chart for Strategy B is shown
in Fig. 7 where parameters # and y are small positive numbers and jn,, is the maximum resolution level
allowed. In the multiscale multiresolution method, the solution at resolution level j is used as an initial
guess for the next higher resolution level.

2.4. Numerical verifications
In this section, we will consider two benchmark-type problems to show the effectiveness of the present

multiscale analysis method.

Case Study 1: Short cantilever beam
As the first case, a square cantilever beam in Fig. 8 is considered. The numerical data are: p (pres-
sure) = 1000, E (Young’s modulus) = 2.0 x 108, v (Poisson’s ratio) = 0.3. Fig. 9 shows the error energy norms
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© parent wavelet

® child wavelet

(a) (b)

(c)

Fig. 4. The interpolation (grid) points of the child wavelets l%ﬂrl,k,l: (a) for the horizontal wavelet (m = 1), (b) for the vertical wavelet
(m = 2), and (c) for the diagonal wavelet (m = 3).

(e) obtained by the non-adaptive (A) and adaptive (B) schemes. The well-known stress recovery technique
(Zienkiewicz and Zhu, 1992) is applied to measure the error energy norm. For the error analysis, the present
multiscale result is transformed into a single scale form.

Fig. 9 shows that the results by the adaptive methods (Strategies A and B) converge faster than the result
by the non-adaptive method. However, the numerical efficiency of Strategy A is very low; the magnitude of
the error energy norm by Strategy A is almost the same as that by the non-adaptive method as the reso-
lution level increases. This is because the refinement near the interpolation points of the wavelets to which
no child wavelet was added at the previous resolution level is not allowed at any higher resolution level.

The locations of the interpolation points of wavelets at the final level are shown in Fig. 10(a) and (b) for
Strategies A and B, respectively. Because of the deficiency of Strategy A mentioned earlier, unnecessarily
many interpolation points were used for the case of Strategy A.

Case 2: Rectangular panel with a circular hole

As the next example, a stress concentration problem shown in Fig. 11 is considered. Fig. 11 depicts a
quarter of a panel having a hole of radius » = 0.1 at its center. The uniform tension p = 1000 in the vertical
direction is applied on the top and bottom edges of the panel. To treat the circular boundary of the hole, the
fictitious domain approach is applied. Since Strategy B always works better than Strategy A, only Strategy
B will be used for all the remaining numerical problems.
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Begin analysis

Resolution j,
analysis

=l

Adaptive scheme
J+1

Resolution j
analysis

No

Converged?

Yes

End analysis

Fig. 5. The flow chart for the adaptive scheme.

Resolution

j+2 i g. -

NN L AN XY

O ©C 44 VON\N @& [/ O]

\\ \\ 1/ |

AN e YAV ARy

':\ . J ]“‘4 ~"\\‘- O . I/
(a) (b)

Fig. 6. Two adaptive schemes: (a) Strategy A and (b) Strategy B.

Fig. 12 shows the stress distribution along 4B of the quarter panel. The solution obtained by the present
adaptive wavelet-Galerkin method agrees well with the converged result by the finite element package,
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Begin adaptive module

g'= nmax '§au|

J=h

j=Jj+l1

Add Y,
No v,

Yes

Remove

End adaptive module

Fig. 7. The adaptive scheme for Strategy B.

ANSYS (12,053 PLANE42 clements). This solution also agrees favorably with the analytic solution for an
infinite panel with a hole.

Fig. 13 shows the location of interpolation points that are adaptively added by Strategy B. Since stress is
concentrated around the hole, the density of the interpolation points is high around it. It is also noted that
some interpolation wavelet points lie outside the original package domain. In the fictitious domain method,
we must consider all the wavelets defined on Q affecting the solution inside the package domain w. More
specifically, wavelets whose interpolation points are on Q \ o and lie across 0w must be considered in the
analysis.

3. Application to the multiscale multiresolution topology optimization

In this section, the multiscale wavelet-Galerkin method will be applied to the multiscale multiresolution
topology optimization. The topology optimization formulation (Bendsee and Kikuchi, 1988) for compli-
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RN

7

B 1

Fig. 8. The short cantilever beam under uniform pressure.

0.024F
0.0160 Nonadaptive
—&— Case A
—&— Case B
()
0.008

| L 1
1000 4000 7000
Degree of freedom

Fig. 9. The comparison of the error energy norms by the non-adaptive method and adaptive schemes, Strategy A and Strategy B.

ance minimization will be briefly stated. Then, the multiscale topology optimization using the standard
single-scale finite element analysis will be given. The main development in this section is to show how the
multiscale wavelet-Galerkin method can be incorporated in the multiscale optimization formulation.

3.1. Topology optimization formulation for compliance minimization

Topology optimization problems for minimizing the structural mean compliance for a prescribed
amount of material can be formulated by the density function method (Bendsee, 1995) as

Minimize /(p) = U] (p)K;(p) U, (p) (32)
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For ux For uy
Op
@ ik ]
10t w2
2l .
30} 30} : i
: i
40+ 40 « s e
50} 50 ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60
nz = 1409 (a) nz=473
For ux For uy
0 * grebsbsvesesidey OE @ 8 8 0000000000000 00000 0 0 Setbete,
R - 2 H e % T B T
20: - - . :I:l:.:. : l 20"‘.:.":".:"'5'."'..:."..'.:':.: :
30_ E L] - L] : * - E - E 30. . . L] . L] - . L] -
aof . .o h . Zil’ A0f ceenenen o e e e ens
50 S Dl LUCLITTY [y Sucunts. ST OPPPPPPPIPP
60 60[gis - - = :
sssssssssnes o beeses 0 -.: . no-cn--n:oc--oo-:nn.
0O 10 20 30 40 50 60 0O 10 20 30 40 50 60
nz = 657 (b) nz = 399

Fig. 10. Grid point locations of the interpolation wavelets by (a) Strategy A and (b) Strategy B.

Ne
subject to a mass constraint i(p) = Z / p,dQ — My <0 (33)
=1 7

side constraints e<p, <1 (0 <e< 1) (34)

In Eq. (32), p denotes {p;, 02, -, P, - - - ,pNe}T and N, is the number of finite elements in a design do-
main and V,, the volume of each element.

Here, we begin with the usual single-scale representation of the topology optimization formulation. The
single-scale stiffness matrix K; is regarded as the function of the density variable p through the following
SIMP model (see Bendsge and Sigmund, 1999, for details on this type of modeling) in the single-scale
element stiffness level:
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L e
B 0.5 J

Fig. 11. Quarter model of a plate with a center hole. The plate is under uniform uniaxial tension (» = 0.1).

3500
B = Adaptive (Case B)
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Fig. 12. Stress plot along the bottom edge AB depicted in Fig. 11.

D =D(p.) = (p.)" Do

where Dy is the elasticity matrix of the given isotropic material.
The sensitivity of f and /4 with respect to p, are simply found as

P 10K 0k nore
a—pe = _Uj a—peU/ = _uje ape W = __eujekjeuje
h(p) _,,

dp, ¢

To compute f(p) and 0f(p)/0p,, the standard single-scale finite element is used.
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Fig. 13. The location of the grid points of wavelets for the solution in Example 2: (a) for the horizontal displacement #* and (b) for the
vertical displacement u”.

3.2. Multi-scale topology optimization using single-scale finite element analysis

In the multiscale topology optimization, the design variables are not the single-scale density variables p,
but multiscaled variables w. Once the design variables are expressed in multiscale, design optimization can
be carried out in multiresolution.

Following Kim and Yoon (2000), the single-scale density variables p are first transformed to the single-
scale auxiliary variables £ as

1

= TTep( 5 2) (—o0 < ¢, < ) (38)

Pe

The role of the nonlinear transform of Eq. (38) is to eliminate the side constraints in Eq. (34), which
otherwise become complicated constraints in the multiscale design space. For the subsequent analysis, we
assume that the original single-scale density variables are defined on equal-sized finite elements.

The auxiliary variables ¢ are then transformed into the multiscale variables w by means of the two-
dimensional Haar wavelet transform Tj.‘; (see e.g., Mallat, 1998):

W, = Tf[') & (—o0 < w; < 00) (39)

The subscript jp denotes the design resolution level. For instance, if the design domain is discretized by
2" x 2" elements, jp is min(m,n).

The transformation from & to w is equivalent to changing the basis of the design variables. In case of a
domain discretized by 2 x 2 finite elements (j, = 1) for example, the single-scale and the multiscale bases are
graphically depicted in Fig. 14. In Fig. 14, # ¢, 'y’ are the Haar scaling function and wavelets. The meaning
of the right superscript i is the same as that used for the interpolation wavelet systems. In the present
applications, we use the non-standard Haar wavelets (see Stollnitz et al., 1996) which have a better space
localization property than the standard Haar wavelets.

The sensitivity of f with respect to the multiscale design variables w can be determined from the fol-
lowing equation:
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Fig. 14. Graphical illustration of the design variable basis for (a) single-scale and (b) multiscale representations (&: +1, @: —1, O0: 0).
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The sensitivity of 4 with respect to w has the same form as Eq. (40).

Once the design variables are expressed in multiscales, the topology optimization can be carried out in
multiresolution from j, = 1 to jp, = Jp. For the case of the design optimization over two resolution levels
from the lowest level jp =1 to the highest level j, = 2, for instance, the design space decompositions for
Jp =1 and jp =2 are illustrated in Fig. 15. The coefficients “s;, and d; (i =1,2,3) are the Haar scaling

. . H H.i . : H Hgi
and wayelet coefficients corresponding to “¢; and "y (i = 1,2, 3), respectively. In terms of “'s;, and "d; ,
the variables w can be arranged as
H Hql H2 Hg3 \ (Hgl Ha2 Ha3 Hal  Hy2  HQ3 T
Wip = [ SfDO’( deo’ deo’ deo)’ ( deo+1’ deo+1’ de0+1)’ to ’( dJD*l’ dJD*I’ dJD*I)] (41)

In the multiresolution design setting, the optimized design at a certain resolution, say jp, = 1, is used as
an initial guess for the design optimization at the next resolution, say j, = 2. Since the design variables are
expressed in multiscales, the values of the design variables at j, = 1 are directly used for the design at
jD == 2

3.3. Multiscale analysis for multiscale topology optimization

In this section, we apply the adaptive multiscale wavelet-Galerkin method for numerical analysis during
the multiscale topology design optimization. With this application, the design resolution increases until the
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Fig. 15. The multiscale design space decompositions for (a) jp = 1 and (b) jp = 2.

desired design resolution level is reached while the analysis resolution for each design resolution is
“adaptively” adjusted by means of the multiscale wavelet-Galerkin method.
To this end, we rewrite the objective function f in Eq. (32) in multiscale form:

7 =T (pK;(p)Uj(p) = U] (p)K;(p)Uj(p) = U} (p(w))K;(p(W))U,(p(w)) (42)

Here, the design variables are the multiscale variables w and the nodal displacements and the system
stiffness matrix are also multiscaled by means of the two-dimensional interpolation wavelets.
To find the sensitivity of f of Eq. (42) with respect to w, we first express 0f /0p as
oK,

af aKI TrpT V5 T T
30, U o, U= U 5, LU = w5

K, 1 Ok,

jeWje = —W, op

(43)

'je

E e

where T}, is the interpolation wavelet transformation relating single and multiscaled element nodal vectors
i, and u;, at resolution j. (Note that the array size of u,, is not the same as that of u,, in general.)

Now, using Egs. (40a), (42) and (43), both the design optimization and the analysis can be processed in
the multiscale multiresolution setting. The actual implementation algorithm is described in Fig. 16. In the
present multiscale multiresolution setting, the results obtained in the previous resolution level for both
analysis and design optimization are used as the initial guess at the next higher resolution level.

3.4. Numerical examples

Here, we will consider two benchmark-type compliance minimization problems set up in the context of
topology optimization. As an optimizer, we use the feasible direction method provided in DOT (Vander-
plaats, 1995). Since the role and effectiveness of the multiscale topology optimization are discussed in earlier
papers such as Kim and Yoon (2000, 2001), Poulsen (2002), Earmme (2001), Yoon et al. (2003), we will be
mainly concerned with the numerical aspect of the multiscale wavelet-Galerkin application to multiscale
topology optimization.
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Fig. 16. The algorithm for the present multiscale analysis and design optimization.

Design Example 1. First, we consider the topology optimization depicted in Fig. 17. Unless stated other-
wise, we will use the following values for all examples: Young’s modulus, £ = 2 x 107, Poisson’s ratio,
v = 0.3. The constraint ratio is 37.5%. The results shown in Fig. 18 are almost the same as those shown in
Kim and Yoon (2000). However, Kim and Yoon (2000) used the single-scale finite element analysis with the
full analysis resolution consistent with the final design resolution j, = 5. To emphasize the role of the
present adaptive wavelet-Galerkin method, we show in Fig. 19(a) how the number of analysis degrees of
freedom varies at the design resolution level j, = 3. Fig. 19(b)—(d) shows the locations of the interpolation
points at the final analysis step for Ny, (iteration number) =1, 3, and 6. As in the previous analysis results
of Figs. 10 and 13, the horizontal and vertical displacements shown in Fig. 19 are interpolated at different
locations, which also contribute to the reduction of the total number of the necessary degrees of freedom.
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Fig. 17. Compliance minimization of a short cantilever beam subject to a point force at the right end corner.

(a) (b)

(c) (d)

(e ()

Fig. 18. The optimized results at the various design resolution levels j,. The final optimized design is shown in (f). (a) jp = 0, Nyer = 4;
(b) jD = ]-a ]viter = 5’ (C) jD = 2: ]Viter = 6, (d) jD = 3: ]viter = 6; (C) jD = 4’ ]viter = 9: (f) jD = 5’ ]viter =40 (]Viter = the total number of the
design iteration, circle: points where gradients are evaluated).
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Fig. 19. The analysis history for the design resolution level j, = 3: (a) the history of the number of analysis degrees of freedom (circle is
marked every one iteration); (b)-(d) the interpolation points after the first, third and sixth iterations.

16

|
Design Domain 10
F1 F2 F3

Fig. 20. Compliance minimization of a structure subject to three simultaneously acting loads.

Design Example 2. As the next design example, a compliance minimization problem depicted in Fig. 20 is
considered for simultaneously acting loads F; = F, = F;. The volume ratio is 30%.
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Fig. 21. The optimized results at various design resolution levels for the design problem depicted in Fig. 20: (a) jp = 1, (b) jp =2,
(©) jp =3, (d) jp =4, and () jp = 5 (final).
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Fig. 22. The location of adaptively inserted interpolation points after completing the design levels of (a) j, = 2 and (b) j, = 4.
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The optimized designs are shown in Fig. 21 and typical locations of interpolation points are illustrated in
Fig. 22. Fig. 22 shows how effective the present adaptive strategy is. We have also studied other topology
optimization problems using the present approach and obtained satisfactory results similar to those ob-
tained for Design Examples 1 and 2.

4. Conclusions

The multiscale wavelet-Galerkin method for two-dimensional elasticity problems has been developed.
The intrinsic multiscale characteristics of wavelets allowed an easy implementation of an adaptive strategy
which successfully reduced the total number of analysis degrees of freedom. As an adaptive solver, the
wavelet-Galerkin method was successfully applied to the multiscale topology design optimization. The
adaptive analysis reduced the analysis matrix size but did not affect the quality of optimized designs. If
design optimization and analysis are fully integrated in the frame of the multiscale multiresolution setting,
not only the analysis resolution but also design optimization resolution can be adaptively adjusted. The full
development of the multiscale method for design problem is expected to allow design optimization that
does not require the pre-selected resolution levels of analysis and design optimization.
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