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Abstract

The multiscale Galerkin formulation of two-dimensional elasticity problems is presented. For easy interpolation and

boundary handlings as well as efficient adaptive analysis, two-dimensional interpolation wavelets are used as the

multiscale trial functions in the Galerkin formulation. After the validity of the present multiscale adaptive method

is verified with some benchmark problems, the present wavelet-based method is applied to the multiscale topology

optimization that progresses design resolution levels dyadically from low to high levels. By this application, we show the

potential of the multiscale method and the possibility of developing a fully integrated analysis and topology design

optimization in the multiscale multiresolution setting.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There has been an increasing interest in the wavelet-based approach in recent years due to the successes

of the wavelet-based methods in several applications. Some, not all, of recent investigations on the wavelet
method include papers by Amaratunga and Williams (1997), Bertoluzza and Naldi (1996), Bertoluzza

(1997), Christon and Roach (2000), Cohen et al. (1998), Cohen and Masson (1999), Dahmen (2001),

Glowinski et al. (1993, 1994), Kim and Jang (2002), Monasse and Perrier (1998), Wells and Zhou (1993).

(See Dahmen (2001) for a recent complete list of references on this subject.) The main advantage of the

wavelet-based methods is that they allow efficient adaptive analysis when analysis is carried out in multi-

resolution.

Though various wavelets are used as the multiscale trial basis in the Galerkin formulation, the hat

interpolation wavelets are employed in this work as they have simple forms, and do not pose much
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difficulty in handling general boundary conditions especially when the wavelet-Galerkin method is

formulated in a fictitious domain. Some successful applications of the interpolation wavelet-based

Galerkin method are reported by Christon and Roach (2000) and Kim and Jang (2002). Christon and

Roach (2000) have shown that the hat interpolation wavelets are stable in H1 and quite effective for
problems with dominant elliptic characteristics. Jang et al. (2003) has recently proposed a multiscale

adaptive method that can handle general boundary conditions along curved boundaries for Poisson�s
problems.

The first objective of the present investigation is to develop the multiscale adaptive wavelet-Galerkin

method for two-dimensional plane elasticity problems by extending the approach developed by Jang et al.

(2003) for Poisson�s problems. The present wavelet formulation for elasticity problems will be followed by

the numerical study of the typical benchmark problems. With this study, we will illustrate how efficiently

two-dimensional elasticity problems are solved even with considerably small numbers of interpolation
wavelet functions.

The second objective of this investigation is to apply the multiscale wavelet-Galerkin method to the

multiscale topology optimization. Some advantages and effectiveness of the multiscale design optimization

can be found in Kim and Yoon (2000, 2001), Earmme (2001), Poulsen (2002), and Yoon et al. (2003).

Unlike the standard single-scale topology optimization, design optimization is carried out progressively

from low to high resolution in the multiscale multiresolution. Since the design resolution varies, there is no

need to use the same, pre-fixed analysis resolution level throughout all design resolution levels. By applying

the present wavelet-Galerkin method in the adaptive multiresolution setting at every design resolution
level of the multiscale design optimization, the numerical efficiency can be gained and remeshing can be

avoided.

Though there still remain a few problems to overcome, the present application to the multiscale topology

optimization would pave the way to the fully integrated multiscale multiresolution analysis and design

optimization in the future. In standard single-scale methods, design optimization usually starts with initial

fixed finite element meshes. If the analysis and design optimization are fully integrated in multiresolution,

however, there will be no need to pre-select a design and/or analysis resolution level at the very beginning

stage of the design optimization; the design resolution level will increase adaptively from a low to a high
level sufficient enough to satisfy all the design requirements while analysis at each design iteration is carried

out adaptively in multiresolution without remeshing.

In design application examples, we consider well-known compliance minimization problems. In these

examples, the topology optimization is carried out in the multiscale multiresolution setting for which the

present wavelet-Galerkin method will be used as an adaptive solver to avoid cumbersome remeshing. Since

the history on the development of topology optimization (Bendsøe and Kikuchi, 1988) is well reviewed by

Eshenauer and Olhoff (2001), the general discussion or the literature review on topology optimization will

not be given here.
2. Adaptive wavelet-Galerkin analysis of two-dimensional elasticity problems

2.1. Multiscale wavelet-Galerkin formulation

We begin with the weak formulation for two-dimensional elasticity problems, which can be stated as
Find u 2 Sx for all v 2 VxZ
x

eðvÞ : C : eðuÞdx ¼
Z

x
f � vdx þ

Z
Ch
�tt � vdCx

ð1Þ
x
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with
Sx ¼ fui 2 H 1ðxÞ jui ¼ gi on Cg
xg

Vx ¼ fvi 2 H 1ðxÞ jvi ¼ 0 on Cgxg
ði ¼ 1; 2Þ
where C denotes the elasticity tensor, e the strain tensor and H 1 the Sobolev space of degree 1. The two-

dimensional domain that an elastic body occupies is denoted by x, which will be referred to as a package
domain (see Fig. 1). The boundary Cx of x consists of Chx where a surface traction �tt is given and Cgx where

displacements are prescribed.

To facilitate the adaptive multiscale analysis without remeshing, we use a rectangular fictitious domain X
encompassing the package domain x. The fictitious domain method has been used successfully in various

problems as done by Cohen and Masson (1999), DeRose (1998), Diaz (1999), Glowinski et al. (1993, 1994),

Jang et al. (2003), Wells and Zhou (1993). The boundary oX of X consists of three parts Cg
X, Ch1X and Ch2X

such that
CgX ¼ X \ Cgx; Ch1X ¼ X \ Chx; Ch2X ¼ X n ðCgx [ Ch1x Þ
where Ch2
X is the traction-free boundary that does not intersect with either Cgx or Ch1

x .
To formulate the multiscale method in the fictitious domain X, the elasticity tensor C and the body force

f must be redefined as
CXðx; yÞ ¼
C if ðx; yÞ 2 x
vC else ðx; yÞ 2 X n x

�
ð2Þ
fXðx; yÞ ¼
fðx; yÞ if ðx; yÞ 2 x
0 else ðx; yÞ 2 X n x

�
ð3Þ
where v is a small parameter (v ¼ 1:0
 10�3 is used in the present work). The effect of this parameter on the

solution accuracy may be found in Cohen and Masson (1999) and Jang et al. (2003).

When the fictitious domain is introduced, the original Galerkin formulation in Eq. (1) can be approx-

imated as
Fig. 1. The typical elasticity problem with a package domain x embedded into a fictitious domain X.
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Find uX 2 SX for all vX 2 VXZ
X

eðvXÞ : CX : eðuXÞdx ¼
Z

X
fX � vX dX þ

Z
Chx

�tt � vX dCx
ð4Þ
with
SX ¼ fuiX 2 H 1ðxÞ juiX ¼ gi on Cg
Xg

VX ¼ fviX 2 H 1ðxÞ jviX ¼ 0 on Cg
Xg

ði ¼ 1; 2Þ
For the multiscale analysis, the displacement field u must be expressed in multiscales. Before present-

ing the full multiscale analysis, we consider the following two-scale representations of uðx; yÞ at resolution
j:
uðx; yÞ ’ ujðx; yÞ ¼
ujðx; yÞ
vjðx; yÞ

�
¼

X
k;l

sj;k;l/j;k;lðx; yÞ ð5Þ
or
ujðx; yÞ ¼
X
k;l

sj�1;k;l/j�1;k;lðx; yÞ þ
X3

m¼1

X
k;l

dmj�1;k;lw
m
j�1;k;lðx; yÞ ð6Þ
with
sj�1;k;l ¼
suj�1;k;l

svj�1;k;l

� �
and dmj�1;k;l ¼

du;mj�1;k;l

dv;mj�1;k;l

� �

If the analysis resolution level is j for a domain X ¼ ½0; 1� 
 ½0; 1�, for instance, the interpolating grid

points will be located at ð2�jk; 2�jlÞ ðk; l 2 f0; 1; 2; . . . ; 2jgÞ. The representation is the same as that used in

the finite element discretization with equal-sized bilinear elements. However, the representation in Eq. (6) is

given by two sets of functions /j;k;l and wm
j;k;l which are defined as
/j;k;lðx; yÞ ¼ 2j/ð2jx� k; 2jy � lÞ ð7Þ

wm
j;k;lðx; yÞ ¼ 2jwmð2jx� k; 2jy � lÞ ðm ¼ 1; 2; 3Þ ð8Þ
The two-dimensional scaling function /ðx; yÞ and wavelet wðx; yÞ are constructed by the tensor products

of the one-dimensional hat interpolation scaling function /1DðxÞ and w1DðxÞ:

/ðx; yÞ ¼ /1DðxÞ/1DðyÞ

w1ðx; yÞ ¼ w1DðxÞ/1DðyÞ ðhorizontal waveletÞ

w2ðx; yÞ ¼ /1DðxÞw1DðyÞ ðvertical waveletÞ

w3ðx; yÞ ¼ w1DðxÞw1DðyÞ ðdiagonal waveletÞ

The functions /1DðxÞ and w1DðxÞ are given by the autocorrelation of the Daubechies scaling function (see

Beylkin and Saito, 1993) as
/1DðxÞ ¼
xþ 1 for� 16 x6 0

1� x for 06 x6 1

0 else

8><>: ð9Þ
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w1DðxÞ ¼ /1Dð2x� 1Þ ¼
2x for 06 x6 1=2
2� 2x for 1=26 x6 1
0 else

8<: ð10Þ
If the function space generated by f/j;k;lg ðk; l ¼ integersÞ is denoted Vj, the use of Eq. (6) is equivalent
to the decomposition of Vj into Vj�1 � Wj�1 where Wj�1 is the space generated by fwmj�1;k;lg ðk; l ¼ integersÞ
that denotes the difference between Vj and Vj�1. Therefore,

P3

m¼1

P
k;l d

m
j�1;k;lw

m
j�1;k;lðx; yÞ represents the

difference between uðx; yÞ in Vj and
P

k;l sj�1;k;l/j�1;k;lðx; yÞ at the resolution level j� 1.
Repeating the decomposition of Vj into Vj�1 and Wj�1 for j ¼ j0 þ 1; . . . ; J yields the following multiscale

representation of uðx; yÞ:
ujðx; yÞ ¼
X
k;l

sj0;k;l/j0;k;lðx; yÞ þ
Xj�1

j¼j0

X3

m¼1

X
k;l

dmj;k;lw
m
j;k;lðx; yÞ ð11Þ
where the lowest resolution level j0 is usually set as j0 ¼ 1. Since the scale information that each wj;k;l

ðj ¼ j0; . . . ; J � 1Þ represents is different, the representation in Eq. (11) is multiscaled. The transformation
between fsj;k;lg ðk; l ¼ integersÞ and fsj�1;k;l; fdmj�1;k;lgm¼1;2;3g ðk; l ¼ integersÞ may be represented by a

transformation matrix T j, which may be found in Jang et al. (2003):
fsj;k;lg ¼ Tj � fsj�1;k;l; fdmj�1;k;lgm¼1;2;3g
To present the multiscale Galerkin formulation based on Eq. (11), we consider the following representa-
tions of u at the resolution j in two-scale form as in Eq. (6) and then extend the result to the full multiscale

representation in Eq. (11).

In matrix form, Eq. (6) is rewritten as
ujðx; yÞ ¼ Njðx; yÞ �Uj ð12Þ

where the matrix Nj and the coefficient vector Uj are defined as
Njðx; yÞ ¼
Uj�1 0

0 Uj�1





W1
j�1 0

0 W1
j�1






W2
j�1 0

0 W2
j�1






W3
j�1 0

0 W3
j�1

" #
¼ ½Ns

j Nd1
j Nd2

j Nd3
j � ð13Þ

Ujðx; yÞ ¼ f suj�1 svj�1 ðdu;1j�1 dv;1j�1 du;2j�1 dv;2j�1 du;3j�1 dv;3j�1Þ g
T ¼ f sj�1 dj�1 gT ð14Þ
where saj�1 and da;m
j�1 are defined as saj�1 ¼ fsaj�1;k;lg, d

a;m
j�1 ¼ fda;m

j�1;k;lg (a ¼ u or v, m ¼ 1; 2; 3). The vectors

Uj�1;W
m
j�1 in Eq. (13) may be identified by equating Eqs. (6) and (12).

Using the standard procedure employed to derive a matrix form from Eq. (1), we can derive the following

matrix equation using the multiscale representation of the test and trial functions of the form in Eq. (6):
Kj �Uj ¼ Fj ð15Þ
with
Kj ¼

ks;sj;j ks;d1j;j ks;d2j;j ks;d3j;j

kd1;d3j;j kd1;d3j;j kd1;d3j;j

sym kd2;d2j;j kd2;d3j;j

kd3;d3j;j

26664
37775 ð16Þ
The submatrices kb;c
p;q in Eq. (16) are defined as
kb;c
p;q ¼

Z
X
ðNb

pÞ
T
LTDXLN

c
q dX ð17Þ
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where DX denotes the matrix representation of the elasticity tensor CX and the matrix Nb
p is defined as
Nb
p ¼

Ns
p if b ¼ s

Ndm

p if b ¼ dm

�
ð18Þ
In Eq. (17), the matrix L denotes the usual differentiation operation:
L ¼

o

ox
o

oy
o

oy
o

ox

26666664

37777775

We remark here that the numerical integration in Eq. (17) can be easily performed by a typical quadrature

rule such as the Gauss quadrature.
The load vector Fj in Eq. (15) can be constructed by two parts, Ffj and Ftj such that
Fj ¼ Ffj þ Ftj ð19Þ
where
Ffj ¼
Z

X
NT
j fX dX ð20Þ

Ftj ¼
Z

Chx

NT
j
�ttdCx ð21Þ
If the usual single-scale representation of u at the resolution j is known
ujðx; yÞ ¼
X
k;l

sj;k;l/j;k;lðx; yÞ ð22Þ
one can easily construct the system stiffness matrix bKKj and the load vector bFFj. From these single-scale

matrices bKKj and bFFj, the present multiscale matrices Kj and Fj in Eq. (15) can be constructed by the fol-

lowing transform:
Kj ¼ TT
j
bKKjTj; Fj ¼ TT

j
bFFj and Uj ¼ Tj bUUj ð23a; bÞ
where Tj is the transformation matrix explained earlier.

To express the displacement u at the next resolution level jþ 1, the following multiscale representation

will be used:
ujþ1ðx; yÞ ¼
X
k;l

sj�1;k;l/j�1;k;lðx; yÞ þ
Xj
j0¼j�1

X3

m¼1

X
k;l

dmj0 ;k;lw
m
j0;k;lðx; yÞ

¼ ujðx; yÞ þ
X3

m¼1

X
k;l

dmj;k;lw
m
j;k;lðx; yÞ ð24Þ
Considering the additional contribution of
P3

m¼1

P
k;l d

m
j;k;lw

m
j;k;lðx; yÞ for the resolution jþ 1, one can

express the stiffness matrix Kjþ1 in the following form:
Kjþ1 ¼
ks;sjþ1 ks;djþ1

sym kd;djþ1

" #
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Since ks;sjþ1 ¼ Kj, only k
s;d
jþ1 and k

d;d
jþ1 need to be newly constructed. The procedure to construct ks;djþ1 and k

d;d
jþ1

is similar to that used to construct Kj.

By carrying out the process described above for from the lowest resolution j ¼ j0 to the highest reso-

lution J , the following system equation can be finally formed:
KJ �UJ ¼ FJ ð25Þ
where
UJ ¼ fsuj0 ; d
u
j0
; duj0þ1; . . . ; d

u
J�1g

T ð26Þ
and
FJ ¼ fsFj0 ; d
F
j0
; dFj0þ1; . . . ; d

F
J�1g

T ð27Þ
and KJ can be constructed by the same procedure to form Kjþ1 from Kj. More detailed procedures for

Poisson�s problems can be found in Christon and Roach (2000) and Jang et al. (2003).
2.2. Treatment of boundary conditions

The prescription of boundary conditions along curved boundaries has been one of the major difficulties

in developing an efficient multiscale wavelet-Galerkin method for problems defined in non-rectangular

domains. By extending the technique proposed for Poisson�s problems, we develop a method to handle

boundary conditions along general boundary curves for plane elasticity problems.

In this work, the boundary ox of the package domain inside X is represented by zigzag lines. Fig. 2(b)
illustrates the zigzag approximation of the original boundary shown in Fig. 2(a). The grid size shown in Fig.

2 governs the resolution or the precision of the approximation used. If the area fraction of a rectangular cell

lying on x is greater than that lying on X n x, the cell is declared to lie inside the package domain X. The

approximated package domain and its boundary will be denoted by xA and oxA, respectively.

To prescribe the displacement or the traction boundary conditions, it is convenient to work with eitherbUUj or bFFj, the single-scale representations of the displacement and load vectors. To prescribe ui ¼ gi
(i ¼ 1; 2) along CgxA

, the value of gi on the point of Cgx closest to CgxA
are used and simply substituted into the
Fig. 2. (a) The package domain x with a general boundary and (b) its approximated domain xA with zigzag lines.
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corresponding locations in bUUj. Then, its multiscale form Uj is obtained from bUUj by the successive appli-

cations of T j.

To treat traction boundary conditions, consider a traction vector tðsÞ prescribed along Ch
x in Fig. 3(a).

As in displacement boundary conditions, when approximating the boundary as ChxA
that consists of zigzag

lines, one can approximate the force vector bFFtj as
Fig. 3.

equiva
bFFtj ¼ Z
Chx

bNNT
j tðsÞds ¼

Z
Chx

bNNT
j ðtðsÞ sin hdxþ tðsÞ cos hdyÞ ð28Þ
where bNNj denotes the single-scale version of Nj in Eq. (13).

To transfer the traction boundary conditions prescribed on ox into those prescribed on the approximate
boundary condition oxA, the following approximation is considered:
bFFtj � Z
ChxA

bNNT
j ðtðsÞ sin hdxþ tðsÞ cos hdyÞ ¼

Z
ChxA

bNNT
j ðtVAðxÞdxþ tHAðyÞdyÞ ð29Þ
with
tVAðxÞ ¼ tðsÞ sin h; tHAðyÞ ¼ tðsÞ cos h ð30Þ
where the arc coordinate s, the angle h and the unit normal vector n are depicted in Fig. 3(a) and (b). The

approximation in Eq. (20) is to replace tðsÞ by a statically equivalent system consisting of tVA and tHA as
(a) A general boundary Ch
x under a surface reaction (b) its approximated boundary ChxA

with zigzag lines and (c,d) a statically

lent system.
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illustrated in Fig. 3(c) and (d). Other approximations are possible, but the present approximation is not

only simple but also effective as shall be seen later with numerical examples. Once bFF tj is determined by Eq.

(29), its multiscale version Ftj is obtained through the transformation T j.

2.3. Adaptive strategy

In the wavelet-based analysis, the wavelet coefficients in Uj represent the differences between low and

high resolution approximations. Consequently, this method possesses an intrinsic adaptivity. Cohen et al.

(1998) and Dahmen (2001) presented efficient adaptive schemes using (bi-)orthogonal wavelets and showed

that the convergence rate is asymptotically optimal. Kim and Jang (2002) and Jang et al. (2003) have re-

cently investigated the convergence property of the adaptive hat wavelet-based Galerkin method numeri-

cally for one-dimensional box beam problems and two-dimensional Poisson problems.
In this work, we will use the adaptive scheme using two thresholding parameters (eu > el > 0). Assume

that the analysis at the resolution level jþ 1 (with f/j0;k;l; fw
m
j0;k;lgj0¼j0;...;jg) is finished. Then the following

procedures are used for the adaptive analysis at the next resolution level jþ 2:
ðiÞ Exclude the wavelet wmj;k;l from the basis set if its coefficient jdmj;k;lj < elj ð31aÞ

ðiiÞ Preserve wm
j;k;l in the basis set if elj6 jdmj;k;lj6 euj ð31bÞ

ðiiiÞ Add child wavelets of wm
j;k;l into the basis set if jdmj;k;lj > euj ð31cÞ
In (31), the child wavelets wmjþ1;k;l are the wavelets at resolution jþ 2 having the corresponding interpolation

points near those of the parent wavelet wm
j;k;l. The interpolation points for three types of the child wavelets

are illustrated in Fig. 4. As the resolution level increases, the thresholding parameters are usually reduced as

eujþ1 ¼ euj=2 and eljþ1 ¼ elj=2.
The flow chart of the overall sequence of the present adaptive scheme is shown in Fig. 5. In applying the

adaptive scheme, two strategies illustrated in Fig. 6 can be considered. To explain these strategies, we utilize

a simple one-dimensional analysis model. In Strategy A, the adaptive scheme (31) is applied to the inter-

polation wavelets having the finest scales at the current resolution level. On the other hand, Strategy B

considers all leaf wavelets, regardless of their scales. The leaf wavelets are defined as the wavelets having no

child wavelet, and indicated by the dotted line in Fig. 6(b).

Although Strategy A is simple to implement, it has some deficiency; once some wavelets are declared not

to have child wavelets at a certain level, those wavelets are not allowed to have child wavelets any more.
Therefore, no further refinement is permitted around the interpolation (or grid) points of these wavelets.

On the other hand, further refinement can be made at any location if the condition (31c) is satisfied since

all leaf wavelets are examined in Strategy B at every resolution level. The flow chart for Strategy B is shown

in Fig. 7 where parameters g and c are small positive numbers and jmax is the maximum resolution level

allowed. In the multiscale multiresolution method, the solution at resolution level j is used as an initial

guess for the next higher resolution level.

2.4. Numerical verifications

In this section, we will consider two benchmark-type problems to show the effectiveness of the present

multiscale analysis method.

Case Study 1: Short cantilever beam
As the first case, a square cantilever beam in Fig. 8 is considered. The numerical data are: p (pres-

sure)¼ 1000, E (Young�s modulus)¼ 2.0 · 108, m (Poisson�s ratio)¼ 0.3. Fig. 9 shows the error energy norms



Fig. 4. The interpolation (grid) points of the child wavelets wmjþ1;k;l: (a) for the horizontal wavelet (m ¼ 1), (b) for the vertical wavelet

(m ¼ 2), and (c) for the diagonal wavelet (m ¼ 3).
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(e) obtained by the non-adaptive (A) and adaptive (B) schemes. The well-known stress recovery technique

(Zienkiewicz and Zhu, 1992) is applied to measure the error energy norm. For the error analysis, the present

multiscale result is transformed into a single scale form.

Fig. 9 shows that the results by the adaptive methods (Strategies A and B) converge faster than the result

by the non-adaptive method. However, the numerical efficiency of Strategy A is very low; the magnitude of

the error energy norm by Strategy A is almost the same as that by the non-adaptive method as the reso-

lution level increases. This is because the refinement near the interpolation points of the wavelets to which

no child wavelet was added at the previous resolution level is not allowed at any higher resolution level.
The locations of the interpolation points of wavelets at the final level are shown in Fig. 10(a) and (b) for

Strategies A and B, respectively. Because of the deficiency of Strategy A mentioned earlier, unnecessarily

many interpolation points were used for the case of Strategy A.

Case 2: Rectangular panel with a circular hole

As the next example, a stress concentration problem shown in Fig. 11 is considered. Fig. 11 depicts a

quarter of a panel having a hole of radius r ¼ 0:1 at its center. The uniform tension p ¼ 1000 in the vertical

direction is applied on the top and bottom edges of the panel. To treat the circular boundary of the hole, the

fictitious domain approach is applied. Since Strategy B always works better than Strategy A, only Strategy

B will be used for all the remaining numerical problems.



Fig. 6. Two adaptive schemes: (a) Strategy A and (b) Strategy B.

Fig. 5. The flow chart for the adaptive scheme.
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Fig. 12 shows the stress distribution along AB of the quarter panel. The solution obtained by the present

adaptive wavelet-Galerkin method agrees well with the converged result by the finite element package,



Fig. 7. The adaptive scheme for Strategy B.
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ANSYS (12,053 PLANE42 elements). This solution also agrees favorably with the analytic solution for an

infinite panel with a hole.

Fig. 13 shows the location of interpolation points that are adaptively added by Strategy B. Since stress is

concentrated around the hole, the density of the interpolation points is high around it. It is also noted that

some interpolation wavelet points lie outside the original package domain. In the fictitious domain method,

we must consider all the wavelets defined on X affecting the solution inside the package domain x. More

specifically, wavelets whose interpolation points are on X n x and lie across ox must be considered in the
analysis.
3. Application to the multiscale multiresolution topology optimization

In this section, the multiscale wavelet-Galerkin method will be applied to the multiscale multiresolution
topology optimization. The topology optimization formulation (Bendsøe and Kikuchi, 1988) for compli-



Fig. 8. The short cantilever beam under uniform pressure.

Fig. 9. The comparison of the error energy norms by the non-adaptive method and adaptive schemes, Strategy A and Strategy B.
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ance minimization will be briefly stated. Then, the multiscale topology optimization using the standard

single-scale finite element analysis will be given. The main development in this section is to show how the

multiscale wavelet-Galerkin method can be incorporated in the multiscale optimization formulation.
3.1. Topology optimization formulation for compliance minimization

Topology optimization problems for minimizing the structural mean compliance for a prescribed

amount of material can be formulated by the density function method (Bendsøe, 1995) as
Minimize f ðqÞ ¼ bUUT
j ðqÞbKKjðqÞbUUjðqÞ ð32Þ



Fig. 10. Grid point locations of the interpolation wavelets by (a) Strategy A and (b) Strategy B.
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subject to a mass constraint hðqÞ ¼
XNe
e¼1

Z
Xe

qe dX �M0 6 0 ð33Þ
side constraints e6 qe6 1 ð0 < e � 1Þ ð34Þ
In Eq. (32), q denotes fq1; q2; . . . ; qe; . . . ; qNeg
T
and Ne is the number of finite elements in a design do-

main and Ve, the volume of each element.

Here, we begin with the usual single-scale representation of the topology optimization formulation. The

single-scale stiffness matrix bKKj is regarded as the function of the density variable q through the following

SIMP model (see Bendsøe and Sigmund, 1999, for details on this type of modeling) in the single-scale
element stiffness level:



Fig. 11. Quarter model of a plate with a center hole. The plate is under uniform uniaxial tension (r ¼ 0:1).

Fig. 12. Stress plot along the bottom edge AB depicted in Fig. 11.

J.E. Kim et al. / International Journal of Solids and Structures 40 (2003) 6473–6496 6487
D ¼ DðqeÞ ¼ ðqeÞ
n
D0 ð35Þ
where D0 is the elasticity matrix of the given isotropic material.

The sensitivity of f and h with respect to qe are simply found as
of ðqÞ
oqe

¼ �bUUT
j

obKKj

oqe
bUUj ¼ �ûuTje

obkkje
oqe

ûuje ¼ � n
qe
ûuTje

bkkjeûuje ð36Þ
ohðqÞ
oqe

¼ Ve ð37Þ
To compute f ðqÞ and of ðqÞ=oqe, the standard single-scale finite element is used.



Fig. 13. The location of the grid points of wavelets for the solution in Example 2: (a) for the horizontal displacement ux and (b) for the

vertical displacement uy .
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3.2. Multi-scale topology optimization using single-scale finite element analysis

In the multiscale topology optimization, the design variables are not the single-scale density variables q,

but multiscaled variables w. Once the design variables are expressed in multiscale, design optimization can

be carried out in multiresolution.

Following Kim and Yoon (2000), the single-scale density variables q are first transformed to the single-

scale auxiliary variables n as
qe ¼
1

1þ expð�S � neÞ
ð�1 < ne < 1Þ ð38Þ
The role of the nonlinear transform of Eq. (38) is to eliminate the side constraints in Eq. (34), which

otherwise become complicated constraints in the multiscale design space. For the subsequent analysis, we

assume that the original single-scale density variables are defined on equal-sized finite elements.

The auxiliary variables n are then transformed into the multiscale variables w by means of the two-
dimensional Haar wavelet transform THjD (see e.g., Mallat, 1998):
wjD ¼ THjD � njD ð�1 < wi < 1Þ ð39Þ
The subscript jD denotes the design resolution level. For instance, if the design domain is discretized by

2m 
 2n elements, jD is minðm; nÞ.
The transformation from n to w is equivalent to changing the basis of the design variables. In case of a

domain discretized by 2 · 2 finite elements (jD ¼ 1) for example, the single-scale and the multiscale bases are

graphically depicted in Fig. 14. In Fig. 14, H/, Hwi are the Haar scaling function and wavelets. The meaning

of the right superscript i is the same as that used for the interpolation wavelet systems. In the present
applications, we use the non-standard Haar wavelets (see Stollnitz et al., 1996) which have a better space

localization property than the standard Haar wavelets.

The sensitivity of f with respect to the multiscale design variables w can be determined from the fol-

lowing equation:



Fig. 14. Graphical illustration of the design variable basis for (a) single-scale and (b) multiscale representations ( : +1, : )1, : 0).
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of
owi

¼
XNe
k¼1

of
oqk

oqk
onk

onk
owi
i.e.,
of
ow

¼ THJD
oq

on

of
oq

ð40aÞ

oq

on

� �
ij

¼ Se�Sni

ð1þ e�SniÞ2
dij ð40bÞ
The sensitivity of h with respect to w has the same form as Eq. (40).

Once the design variables are expressed in multiscales, the topology optimization can be carried out in

multiresolution from jD ¼ 1 to jD ¼ JD. For the case of the design optimization over two resolution levels

from the lowest level jD ¼ 1 to the highest level jD ¼ 2, for instance, the design space decompositions for
jD ¼ 1 and jD ¼ 2 are illustrated in Fig. 15. The coefficients HsjD and HdijD (i ¼ 1; 2; 3) are the Haar scaling

and wavelet coefficients corresponding to H/jD and Hwi
jD
(i ¼ 1; 2; 3), respectively. In terms of H sjD and HdijD ,

the variables w can be arranged as
wJD ¼ ½H sjD0 ; ðHd1jD0 ;
Hd2jD0 ;

Hd3jD0Þ; ð
Hd1jD0þ1;

Hd2jD0þ1;
Hd3jD0þ1Þ; . . . ; ð

H
d1JD�1;

Hd2JD�1;
Hd3JD�1Þ�

T ð41Þ
In the multiresolution design setting, the optimized design at a certain resolution, say jD ¼ 1, is used as

an initial guess for the design optimization at the next resolution, say jD ¼ 2. Since the design variables are

expressed in multiscales, the values of the design variables at jD ¼ 1 are directly used for the design at

jD ¼ 2.

3.3. Multiscale analysis for multiscale topology optimization

In this section, we apply the adaptive multiscale wavelet-Galerkin method for numerical analysis during
the multiscale topology design optimization. With this application, the design resolution increases until the



Fig. 15. The multiscale design space decompositions for (a) jD ¼ 1 and (b) jD ¼ 2.
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desired design resolution level is reached while the analysis resolution for each design resolution is

‘‘adaptively’’ adjusted by means of the multiscale wavelet-Galerkin method.

To this end, we rewrite the objective function f in Eq. (32) in multiscale form:
f ¼ bUUT
j ðqÞbKKjðqÞbUUjðqÞ ¼ UT

j ðqÞKjðqÞUjðqÞ ¼ UT
j ðqðwÞÞKjðqðwÞÞUjðqðwÞÞ ð42Þ
Here, the design variables are the multiscale variables w and the nodal displacements and the system

stiffness matrix are also multiscaled by means of the two-dimensional interpolation wavelets.

To find the sensitivity of f of Eq. (42) with respect to w, we first express of =oq as
of
oqe

¼ �bUUT
j

obKKj

oqe
bUUj ¼ �UT

j T
T
j

obKKj

oqe
TjUj ¼ �uTjeTT

je

obKKje

oqe
Tjeuje ¼ �uTje

okje

oqe
uje ð43Þ
where Tje is the interpolation wavelet transformation relating single and multiscaled element nodal vectors

ûuje and uje at resolution j. (Note that the array size of ûuje is not the same as that of uje in general.)

Now, using Eqs. (40a), (42) and (43), both the design optimization and the analysis can be processed in
the multiscale multiresolution setting. The actual implementation algorithm is described in Fig. 16. In the

present multiscale multiresolution setting, the results obtained in the previous resolution level for both

analysis and design optimization are used as the initial guess at the next higher resolution level.

3.4. Numerical examples

Here, we will consider two benchmark-type compliance minimization problems set up in the context of

topology optimization. As an optimizer, we use the feasible direction method provided in DOT (Vander-

plaats, 1995). Since the role and effectiveness of the multiscale topology optimization are discussed in earlier

papers such as Kim and Yoon (2000, 2001), Poulsen (2002), Earmme (2001), Yoon et al. (2003), we will be

mainly concerned with the numerical aspect of the multiscale wavelet-Galerkin application to multiscale
topology optimization.



Fig. 16. The algorithm for the present multiscale analysis and design optimization.
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Design Example 1. First, we consider the topology optimization depicted in Fig. 17. Unless stated other-

wise, we will use the following values for all examples: Young�s modulus, E ¼ 2
 107, Poisson�s ratio,

m ¼ 0:3. The constraint ratio is 37.5%. The results shown in Fig. 18 are almost the same as those shown in

Kim and Yoon (2000). However, Kim and Yoon (2000) used the single-scale finite element analysis with the
full analysis resolution consistent with the final design resolution jD ¼ 5. To emphasize the role of the

present adaptive wavelet-Galerkin method, we show in Fig. 19(a) how the number of analysis degrees of

freedom varies at the design resolution level jD ¼ 3. Fig. 19(b)–(d) shows the locations of the interpolation

points at the final analysis step for Niter (iteration number)¼ 1, 3, and 6. As in the previous analysis results

of Figs. 10 and 13, the horizontal and vertical displacements shown in Fig. 19 are interpolated at different

locations, which also contribute to the reduction of the total number of the necessary degrees of freedom.



Fig. 18. The optimized results at the various design resolution levels jD. The final optimized design is shown in (f). (a) jD ¼ 0, Niter ¼ 4;

(b) jD ¼ 1, Niter ¼ 5; (c) jD ¼ 2, Niter ¼ 6; (d) jD ¼ 3, Niter ¼ 6; (e) jD ¼ 4, Niter ¼ 9; (f) jD ¼ 5, Niter ¼ 40 (Niter ¼ the total number of the

design iteration, circle: points where gradients are evaluated).

Fig. 17. Compliance minimization of a short cantilever beam subject to a point force at the right end corner.
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Fig. 19. The analysis history for the design resolution level jD ¼ 3: (a) the history of the number of analysis degrees of freedom (circle is

marked every one iteration); (b)–(d) the interpolation points after the first, third and sixth iterations.

Fig. 20. Compliance minimization of a structure subject to three simultaneously acting loads.
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Design Example 2. As the next design example, a compliance minimization problem depicted in Fig. 20 is

considered for simultaneously acting loads F1 ¼ F2 ¼ F3. The volume ratio is 30%.



Fig. 21. The optimized results at various design resolution levels for the design problem depicted in Fig. 20: (a) jD ¼ 1, (b) jD ¼ 2,

(c) jD ¼ 3, (d) jD ¼ 4, and (e) jD ¼ 5 (final).

Fig. 22. The location of adaptively inserted interpolation points after completing the design levels of (a) jD ¼ 2 and (b) jD ¼ 4.
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The optimized designs are shown in Fig. 21 and typical locations of interpolation points are illustrated in

Fig. 22. Fig. 22 shows how effective the present adaptive strategy is. We have also studied other topology

optimization problems using the present approach and obtained satisfactory results similar to those ob-

tained for Design Examples 1 and 2.
4. Conclusions

The multiscale wavelet-Galerkin method for two-dimensional elasticity problems has been developed.

The intrinsic multiscale characteristics of wavelets allowed an easy implementation of an adaptive strategy

which successfully reduced the total number of analysis degrees of freedom. As an adaptive solver, the

wavelet-Galerkin method was successfully applied to the multiscale topology design optimization. The

adaptive analysis reduced the analysis matrix size but did not affect the quality of optimized designs. If

design optimization and analysis are fully integrated in the frame of the multiscale multiresolution setting,
not only the analysis resolution but also design optimization resolution can be adaptively adjusted. The full

development of the multiscale method for design problem is expected to allow design optimization that

does not require the pre-selected resolution levels of analysis and design optimization.
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